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We propose a model for network formation and study some of its statistical properties. The motivation for
the model comes from the growth of several kinds of real networks �i.e., kinship and trading networks,
networks of corporate alliances, networks of autocatalytic chemical reactions�. These networks grow either by
establishing closer connections by adding links in the existing network or by adding new nodes. A node in
these networks lacks the information of the entire network. In order to establish a closer connection to other
nodes it starts a search in the neighboring part of the network and waits for a possible feedback from a distant
node that received the “searching signal.” Our model imitates this behavior by growing the network via the
addition of a link that creates a cycle in the network or via the addition of a new node with a link to the
network. The forming of a cycle creates feedback between the two ending nodes. After choosing a starting
node, a search is made for another node at a suitable distance; if such a node is found, a link is established
between this and the starting node, otherwise �such a node cannot be found� a new node is added and is linked
to the starting node. We simulate this algorithm and find that we cannot reject the hypothesis that the empirical
degree distribution is a q-exponential function, which has been used to model long-range processes in non-
equilibrium statistical mechanics.
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I. INTRODUCTION

We present a generative model for constructing networks
that grow via competition between cycle formation and the
addition of new nodes. The algorithm is intended to model
situations such as trading networks, kinship relationships, or
business alliances, where networks evolve either by estab-
lishing closer connections by adding links to existing nodes
or alternatively by adding new nodes. In arranging a mar-
riage, for example, parents may attempt to find a partner
within their preexisting kinship network. For reasons such as
alliance building and incest avoidance, such a partner should
ideally be separated by a given distance in the kinship net-
work �1�. Such a marriage establishes a direct tie between
families, creating new cycles in the kinship network. Alter-
natively, if they do not find an appropriate partner within the
existing network, they may seek a partner completely outside
it, thereby adding a new node and expanding it.

Another motivating example is trading networks �2�. Sup-
pose two agents �nodes� are linked if they trade directly. To

avoid the markups of middlemen, and for reasons of trust or
reliability, an agent may seek new, more distant, trading part-
ners. If such a partner is found within the existing network a
direct link is established, creating a cycle. If not, a new part-
ner is found outside the network, a direct link is established,
and the network grows. A similar story can be told about
strategic alliances of businesses �3,4�; when a business seeks
a partner, that partner should not be too similar to businesses
with which relationships already exist. Thus the business will
first take the path of least effort, and seek an appropriate
partner within the existing network of businesses that it
knows; if this is not possible, it may be forced to find a
partner outside the existing network.

All of these examples share the common property that
they involve a competition between a process for creating
new cycles within the existing network and the addition of
new nodes to the network. While there has been an explosion
of work on generative models of graphs �5–9�, there has been
very little work on networks of this type. The only exception
that we are aware of involves network models of autocata-
lytic metabolisms �3,10–13�. Such autocatalytic networks
have the property that network growth comes about through
the addition of autocatalytic cycles, which can involve either
existing chemical species or entirely new chemical species.
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Previous work has focused on topological graph closure
properties �10,12�, or the simulation of chemical kinetics
�13�, and was not focused on the statistical properties of the
graphs themselves. We call graphs of the type that we study
here feedback networks because the cycles in the graph rep-
resent a potential for feedback processes, such as strengthen-
ing the ties of an alliance or chemical feedback that may
enhance the concentration corresponding to an existing
node �1�.

We study the degree distributions of the graphs generated
by our algorithm �5,6,14�, and find that they are well de-
scribed by distribution functions that have recently been pro-
posed in nonequilibrium statistical mechanics, or more pre-
cisely in nonextensive statistical mechanics �15,16�. Such
distributions occur in the presence of strong correlations,
e.g., phenomena with long-range interactions. Our intuition
for why these distributions occur here is that the cycle gen-
eration inherently generates long-range correlations in the
construction of the graph.

II. MODEL

The growth model we propose closely mimics the ex-
amples given above. For each time step, a starting node i is
randomly selected �e.g., the person or family looking for a
marriage partner� and a target node j �the marriage partner�
is searched for within the existing network. Node j is not
known at the outset but is searched for starting at node i. The
search proceeds by attempting to move through the existing
network for some d number of steps without retracing the
path. If the search is successful a new link �edge� is
drawn from i to j. If the search is unsuccessful, as explained
below, a new node j� is added to the graph and a link is
drawn from i to j�. This process can be repeated for an arbi-
trary number of steps. In our simulations, we begin with a
single isolated node but the initial condition is asymptoti-
cally not important.

For each time step we randomly draw from a scale-free
distribution the starting node i, the distance d �number of
steps necessary to locate j starting at i assuming that such a
location does occur�, and for each node along the search

FIG. 1. Representations of typical network models with 250 nodes for �=1.3. The panels correspond to �a� �=0,�=0, �b� �=0,�=1,
�c� �=1,�=0, and �d� �=1,�=1. Sizes of nodes are proportional to their degrees. In the bottom graphs hubs emerge spontaneously
due to preferential attachment ��=1� while on the right more clustering occurs because of the larger routing parameter in cycle
formation ��=1�. Notice that the denomination preferential attachment is also used in the literature in a slightly different sense,
namely, when the probability of a new node to attach to a preexisting one of the growing network is proportional to the degree of the
preexisting one.
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path, the subsequent neighbor from which to continue the
search. While node j is not randomly selected at the outset, it
is obviously guaranteed that the shortest path distance from i
to j is at most d. We now describe the model in more detail
including the method for generating search paths, and the
criterion for a successful search.

Selection of node i. The probability P� of selecting a
given node from among the N nodes of the existing network
is proportional to its degree raised to a power �. The param-
eter ��0 is called the attachment parameter:

P��i� =
�deg�i���

�m=1

N
�deg�m���

. �1�

Assignment of search distance d. An integer d �d�1� is
chosen with probability P� where ��1 is the distance decay
parameter,1

P��d� =
d−�

�m=1

�
m−�

. �2�

In our experiments, we use the approximation of �m=1
105

m−�

for computing the denominator of Eq. �2�.
Generation of search path. In the search for node j, as-

sume that at a given instant the search is at node r, where
initially r= i. A step of the search occurs by randomly choos-
ing a neighbor of r, defined as a node l with an edge con-
necting it to r. We do not allow the search to retrace its steps,
so nodes l that have already been visited are excluded. Fur-
thermore, to make the search more efficient, the probability
of choosing node l is weighted based on its unused degree
u�l�, which is defined as the number of neighbors of l that
have not yet been visited.2 The probability for selecting a
given neighbor l is

1��1 is required to make the sum in the normalization converge.

2By this we mean the number of neighboring nodes that have not
been visited in this step of the algorithm, i.e., in this particular
search.

FIG. 2. Representations of typical network models with 250 nodes for �=1.3. The panels correspond to �a� �=0,�=0, �b� �=0,�=1,
�c� �=1,�=0, and �d� �=1,�=1. The thickness of an edge is proportional to the number of successfully created feedback cycles in which
the edge has participated. The networks on the right of Figs. 1 and 2 show clusters of connected hubs with well-traversed routes around the
clusters, while in those on the left, more treelike, hubs connect but not in clusters with well-traversed routes around them.
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P��l� =
�1 + u�l���

�m=1

M
�1 + u�m���

, �3�

where M is the number of unvisited nearest neighbors of
node r. ��0 is called the routing parameter. If there are no
unvisited neighbors of r the search is terminated, a new node
is created, and an edge is drawn between the new node and
node i. Otherwise this process is repeated up to d steps, and
a new edge is drawn between node j= l and node i. In the
first case we call this node creation, and in the second case,
cycle formation.

III. RESULTS

Typical feedback networks with N=250 for �� ,� ,�� of
��0, 1.3, 0�, �0, 1.3, 1�, �1, 1.3, 0�, �1, 1.3, 1�� are shown in

Figs. 1 and 2. The two figures display different depictions of
the same four graphs. In Fig. 1 the sizes of the nodes repre-
sent their degrees and in Fig. 2 the thickness of the edge is
proportional to the number of successfully created feedback
cycles in which the edge participated �i.e., the number of
times the search traversed this edge�.

The attachment parameter � controls the extent to which
the graph tends to form hubs �highly connected nodes�.
When �=0 there is no tendency to form hubs, whereas when
� is large there tend to be fewer hubs. As the distance decay
parameter � increases the network tends to become denser
due to the fact that d is typically very small. As � increases
the search tends to seek out nodes with higher connectivity,
there is a higher probability of successful cycle formation,
and the resulting graphs tend to be more interconnected and
less treelike.

FIG. 3. Degree distributions and fits to a q-exponential for simulations of networks with N=5000 and 10 realizations. The dots
correspond to the empirically observed frequency of each degree; the lowest row of dots in each case corresponds to observing one node with
that degree. The solid curves represent the best fit to a q-exponential. In each case � has the three values �0, 0.5, 1�, corresponding to black,
dark gray, and light gray, respectively. �a� �=1.2,�=0, �b� �=1.2,�=1, �c� �=1.4,�=0, and �d� �=1.4,�=1. Note that the scale of the x
axes changes. The parameters of the fitted generalized q-exponential functions are given in Table I.
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Despite that fact that network formation in our model de-
pends purely on local information, i.e., each step only de-
pends on information about nodes and their nearest neigh-
bors, the probability of cycle formation is strongly dependent
on the global properties of the graph, which evolve as the
network is being constructed. In our model there is a com-
petition between successful searches, which increase the de-
gree of two nodes and leave the number of nodes unaltered,
and unsuccessful searches, which increase the degree of an
existing node but also create a new node with degree 1.
Successful searches lower the mean distance of a node to
other nodes, and failed searches increase this distance. This
has a stabilizing effect—a nonzero rate of failed searches is
needed to increase distances so that future searches can suc-
ceed. Using this mechanism to grow the network ensures that
local connectivity structures, in terms of the mean distance
of a node to other nodes, are somewhat similar across nodes
thus creating long-range correlations between nodes. Be-
cause these involve long-range interactions, we check
whether the resulting degree distributions can be described
by the form

p�k� = p0k�eq
−k/� �4�

where the q-exponential function eq
x is defined as

eq
x � �1 + �1 − q�x�1/�1−q� �e1

x = ex� , �5�

if 1+ �1−q�x�0, and zero otherwise. This reduces to the
usual exponential function when q=1, but when q�0 it as-
ymptotically approaches a power law in the limit x→�.
When q�1, the case of interest here, it asymptotically de-
cays to zero. The factor p0 coincides with p�0� if and only if
�=0; � is a characteristic degree number. The q-exponential

function arises naturally as the solution of the equation
dx /dt=xq, which occurs as the leading behavior at some
critical points. It has also been shown �17� to arise as the
stationary solution of a nonlinear Fokker-Planck equation
also known as the porous medium equation. Various mesos-
copic mechanisms �involving multiplicative noise� have al-
ready been identified which yield this type of solution �18�.

Finally, the q-exponential distribution also emerges from
maximizing the entropy Sq �15� under a constraint that char-

TABLE I. Parameters for the best fit to a q-exponential function for networks with different parameters.
The first three columns are the parameters of the network model, and the next three columns are the
parameters for the fit to the q-exponential. The parameter b represents the exponent in the limiting �when
k→�� Pareto distribution. It is defined by b�1/ �q−1�−� �see the text�. The last two columns are p values
for nonparametric statistical Kolmogorov-Smirnov �KS� and Wilcoxon rank sum �W� tests. The standard
acceptance criterion is to have p�0.05, i.e., less than one failure in 20. The asterisk depicts the one case
where the null hypothesis was rejected. Consequently, if we demand that both KS and W tests are satisfied,
we obtained failure in only one among the 12 cases that we have analyzed.

Network model Fitted parameters p values for nonparametric tests �21�
� � � q � � b KS test W test

0 1.2 0 1.08 1.7 0 12.5 0.90 0.54

0.5 1.2 0 1.2 2.1 −0.6 5.6 0.91 0.50

1 1.2 0 1.65 2.75 −1.4 2.94 1.0 0.80

0 1.2 1 1.21 1.5 0 4.76 0.80 0.429

0.5 1.2 1 1.38 1.8 −0.6 3.23 0.15 0.096

1 1.2 1 2.1 2.8 −1.5 2.41 0.76 0.65

0 1.4 0 1.16 1.91 0 6.25 1.0 0.83

0.5 1.4 0 1.31 2.35 −0.6 3.83 1.0 0.95

1 1.4 0 1.85 3.2 −1.4 2.58 0.07 0.03*

0 1.4 1 1.16 5.4 0 6.25 0.96 0.92

0.5 1.4 1 1.42 4.5 −0.6 2.98 0.73 0.44

1 1.4 1 2.9 3 −1.5 2.03 0.24 0.35

FIG. 4. Dependence of the q-exponential parameter � on the
network parameters �, �, and �.
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acterizes the number of degrees per node of the distribution.
Let us briefly recall this derivation. Consider the entropy

Sq �

1 − 	
0

�

dk�p�k��q

q − 1 
S1 = SBG � − 	
0

�

dk p�k�ln p�k�� ,

�6�

where we assume k as a continuous variable for simplicity,
and BG stands for Boltzmann-Gibbs. If we extremize Sq with
the constraints �15�

	
0

�

dk p�k� = 1 �7�

and

	
0

�

dk k�p�k��q

	
0

�

dk�p�k��q

= K � 0, �8�

we obtain

p�k� =
eq

−�k

	
0

�

dk�eq
−�k�

� eq
−k/� �k 	 0� , �9�

where the Lagrange parameter ��1/� is determined
through Eq. �8�. Both constraints �7� and �8� impose q
2.

Now to arrive at the ansatz �4� that we have used in this
paper, we must provide some plausibility to the factor k� in
front of the q-exponential. It happens that this factor is the
most frequent form of density of states in condensed matter
physics �it exactly corresponds to systems of arbitrary di-
mensionality whose quantum energy spectrum is propor-
tional to an arbitrary power of the wave vector of the par-
ticles or quasiparticles; depending on the system, � can be
positive, negative, or zero, in which case the ansatz repro-
duces a simple q-exponential�. Such density of states concur-
rently multiplies the Boltzmann-Gibbs factor, which is here
naturally represented by eq

−k/�. In addition to this, ansatz �4�
provided very satisfactory results in financial models where a
plausible scale-free network basis was given to account for
the distribution of stock trading volumes �19�. An interesting
financial mechanism using multiplicative noise has been re-
cently proposed �20� which precisely leads to a stationary
state distribution of the form �4�. It is for this ensemble of
heuristic reasons that we checked the form �4�. The numeri-
cal results that we obtained proved a posteriori that this
choice was a good one.

FIG. 5. Dependencies of q-exponential parameters q and � that were fitted to network models.
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To study the node degree distribution p�k�, i.e., the fre-
quency with which nodes have k neighbors, we simulate ten
realizations of networks with N=5000 for different values of
the parameters �, �, and �. Some results are shown in Fig. 3.
We fit q-exponential functions to the empirical distributions
using the Gauss-Newton algorithm for nonlinear least-
squares estimates of the parameters. Due to limitations of the
fitting software we used, we had to manually correct the
fitting for the tail regions of the distribution. In Table I we
give the parameters of the best fits for various values of �, �,
and �, demonstrating that the degree distribution depends on
all three parameters. The solid curves in Fig. 3 represent the
best fit to a q-exponential.

The fits to the q-exponential are extremely good in every
case. To test the goodness of fit, we performed Kolmogorov-
Smirnov �KS� and Wilcoxian �W� rank sum tests �21�. Due
to the fact that the q-exponential is defined only on �0,��,
we used a two-sample KS test �21�. To deal with the problem
that the data are very sparse in the tail, we excluded data
points with sample probability less than 10−4. For the KS test
the null hypothesis is never rejected, and for the W test one
case out of 12 is rejected, with a p value of 0.03. Thus we
can conclude that there is no evidence that the q-exponential
is not the correct functional form.

From Eq. �4� we straightforwardly verify that, in the
k→� limit, we obtain �see also Fig. 3� a Pareto distribution,

of the form ak−b, where a� p0�� / �q−1��1/�q−1� and
b�1/ �q−1�−�. This corresponds to scale-free behavior, i.e.,
the distribution remains invariant under the scale transforma-
tion k→Kk. In general, however, scale free-behavior is only
approached asymptotically, and the q-generalized exponen-
tial distribution, which contains the Pareto distribution as a
special case, gives a much better fit.

A. Parameters of model vs q-exponential

To understand how the parameters of the q-exponential
depend on those of the model, we estimated the parameters
of the q-exponential for �= �0,0.25,0.5,0.75,1�,
�= �1.1,1.2,1.3,1.4,1.5�, and �= �0,0.5,1�. Figure 4 studies
the dependence of � on the graph parameters, and Fig. 5
studies the dependence of q and �.

It is clear that � depends solely on the attachment param-
eter �. The other two q-exponential parameters �q and ��
depend on all three model parameters. The parameter � di-
verges when � and � grow large and �=0. The q parameter
grows rapidly as each of the three model parameters in-
crease.

In Fig. 6 we study the distribution of edge weights, where
an edge weight is defined as the number of times an edge
participates in the construction of a feedback cyle �i.e., how
many times it is traversed during the search leading to the
creation of the cycle�. From this figure it is clear that this
property is nearly independent of the attachment parameter
�, but is strongly depends on the routing parameter �.

IV. CONCLUSIONS

In this paper we have presented a generative model for
creating graphs representing feedback networks. The con-
struction algorithm is strictly local, in the sense that any
given step in the construction of a network requires informa-
tion about only the nearest neighbors of nodes. Nonetheless,
the resulting networks display long-range correlations in
their structure. This is reflected in the fact that the
q-exponential distribution, which is associated with long-
range correlation in problems in statistical mechanics, pro-
vides a good fit to the degree distribution.

We think this adds an important contribution to the litera-
ture on the generation of networks by illustrating a mecha-
nism that specifically focuses on the competition between
consolidation by adding cycles, which represent stronger
feedback within the network, and growth in size by simply
adding more nodes. In future work, we hope to apply the
present model to real networks such as biotech intercorporate
networks, medieval trading networks, marriage networks,
and other real examples.

ACKNOWLEDGMENTS

Partial sponsoring from SI International and AFRL is
acknowledged.

FIG. 6. �Color� Distribution of edge weights. Edge weights rep-
resent the number of successfully created feedback cycles in which
an edge participated. The parameter �=1.3, but � and � vary. These
calculations are based on 1000 realizations of networks growing to
N=500. The edge weight distribution experiences only a slight
change to the right when increasing the distance decay parameter �
while varying � but keeping � constant.
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